STOL Functions

Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.

STOL Functions 1

STOL Functions

This document describes the functions available in ITOS STOL and other applications
that use the Sx library.

ABS — Absolute value of x

ABS(x) computes the absolute value of x. If x is float (or string which can be converted
to float), the result of ABS(x) is float. Otherwise x must be int or convertible to int, and
the result of ABS(x) is int.

ABS(15) = (int) 15
ABS(-3.9) = (float) 3.9

ACOS — Compute arc cosine of x

AC0S(x) computes the arc cosine of x. x must range from -1 to 1; the resulting angle is
in radians and will range from 0 to pi.

ASIN — Compute arc sine of x

ASIN(x) computes the arc sine of x. x must range from -1 to 1; the resulting angle is in
radians and will range from -pi/2 to pi/2.

ATAN — Compute arc tangent of x

ATAN(x) computes the arc tangent of x. The resulting angle is in radians and will range
from -pi/2 to pi/2.

BWAND - Bitwise AND of x and y

BWAND(x,y) computes the bitwise AND of x and y. x and y must be unsigned (or
convertible to unsigned); the result of BWAND(x,y) is unsigned.

BWAND(b’00110011°,5°10101010°) = b’00100010°
BWAND(123,55) = b1

BWINVERT — Invert bits in x

BWINVERT (x) inverts the bits in x. x must be unsigned (or convertible to unsigned); the
result of BWINVERT (x) is unsigned.
BWINVERT (x’FOFOFOF0’) = (unsigned) x’OFOFOFOF’

BWLSHIFT — Logical left shift x y bits

BWLSHIFT (x,y) computes the value of x shifted left y bits. (If y is negative, this amounts
to a right shift). y must be .GT. -32 and .LT. 32. The result of BWLSHIFT (x,y) is unsigned.

BWLSHIFT(b’0001°,3) = b’1000°
BWLSHIFT(1,3) = (unsigned) 8

$Date: 2006/07/24 21:17:20 $

STOL Functions 2

BWOR - Bitwise OR of x and y

BWOR(x,y) computes the bitwise OR of x and y. x and y must be unsigned (or convertible
to unsigned); the result of BWOR(x,y) is unsigned.

BWOR(b’00110011°,b°10101010°) = b’10111011°
BWOR(123,55) = 127

BWRSHIFT - Logical right shift x y bits

BWRSHIFT(x,y) computes the value of x shifted right y bits. (If y is negative, this
amounts to a left shift). y must be .GT. -32 and .LT. 32. The result of BWRSHIFT(x,y) is
unsigned.

BWRSHIFT(b>1000°,3) = b’0001°
BWRSHIFT(100,3) = (unsigned) 12

CEIL — Smallest int .GE. x

CEIL(x) computes the smallest int that is .GE. x. x must be float (or convertible to
float); the result of CEIL(x) is int.

CEIL(4.8) = (int) 5
CEIL(-4.8) = (int) -4

CONCAT - Concatenate strings (2 to 999)

CONCAT(x,y,...) concatenates all arguments into a string. The result of
CONCAT(x,y,...) is a string.

CONCAT("name",1) = "namel"

To sequential print to a file whose name is generated from the year and day of year, do
something like:

GLOBAL day,year

day = 100

year = 93

SEQPRT acstmp > (concat("acstmp.",year,"-",day))

The above example sequential prints to acstmp.93-100.

COS — Cosine of x

C0S(x) computes the cosine of x. x must be float (or convertible to float); the result of
cos(x) is float. x is in radians.

C0S(0) = (float) 1
C0S(.123) = (float) 0.992445

$Date: 2006/07/24 21:17:20 $

STOL Functions 3

DELTA

This function is not yet implemented. It is intended to be used with WAIT UNTIL to
determine the delta difference between consecutive values (to make it possible to ‘wait until
the value changes by more than 1.7’, for example).

EVTMSG

This function is not yet implemented. It is intended to be used for it’s side effect, which
is to generate an event message.

EXISTS — Has mnem’s value been set?

EXISTS (mnemonic) returns 1 if mnemonic is, in fact, a mnemonic and mnemonic’s value
exists.

A mnemonic’s value is said to exist if it has ever been set. Most global mnemonics get
set (and thus exist) when the system starts up. Telemetry mnemonics don’t exist until
they’ve been received in telemetry (see (undefined) [Exist flag], page (undefined)).

FLOOR — Largest int .LE. x

FLOOR(x) computes the largest int that is .LE. x. x must be float (or convertible to
float); the result of FLOOR(x) is int.

FLOOR(4.8) = (int) 4
FLOOR(-4.8) = (int) -5

FORMAT — Format x

The FORMAT (fmt ,x) function creates a string containing the value of x formatted ac-
cording to fmt.

fmt is similar to a C language printf conversion specification and is a string beginning
with the % character, ending with the conversion character, and possible containing conver-
sion parameters in between. Note that format must begin with the % character and must
end with the conversion character!

The optional conversion parameters are the conversion flags, minimum field width, and
precision; an example of a conversion with all of the optional conversion parameters is
%+8.4f — + is a conversion flag; 8 is the minimum field width, and 4 is the precision.

diouxXb The int (or appropriate variant) argument is converted to signed decimal (d and
i), unsigned octal (o), unsigned decimal (u), unsigned hexadecimal (x and X),
or unsigned binary (b) notation. The letters ‘abcdef’ are used for x conversions;
the letters ‘ABCDEF’ are used for X conversions. The precision, if any, gives the
minimum number of digits that must appear; if the converted value requires
fewer digits, it is padded on the left with zeros.

$Date: 2006/07/24 21:17:20 $

STOL Functions 4

eE

The double argument is rounded and converted in the style [-]d.ddde+-dd where
there is one digit before the decimal-point character and the number of digits
after it is equal to the precision; if the precision is missing, it is taken as 6; if
the precision is zero, no decimal-point character appears. An E conversion uses
the letter E (rather than e) to introduce the exponent. The exponent always
contains at least two digits; if the value is zero, the exponent is 00.

The double argument is rounded and converted to decimal notation in the style
[-]ddd.ddd, where the number of digits after the decimal-point character is equal
to the precision specification. If the precision is missing, it is taken as 6; if the
precision is explicitly zero, no decimal-point character appears. If a decimal
point appears, at least one digit appears before it.

The double argument is converted in style f or e (or E for G conversions). The
precision specifies the number of significant digits. If the precision is missing,
6 digits are given; if the precision is zero, it is treated as 1. Style e is used if
the exponent from its conversion is less than -4 or greater than or equal to the
precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

The int argument is converted to an unsigned char, and the resulting character
is written.

The argument is converted to a character string. Characters are written up to
(but not including) a terminating NUL character. If a precision is specified, no
more than the number specified are written.

Some format examples:

FORMAT("%b",22)

= 10110

FORMAT ("%08b,22)

= 00010110

FORMAT ("%08X,22)

= 00000016

FORMAT ("%s","abcd")
= abcd
FORMAT("%12s","abcd")

=

abcd

GETENYV — get environment variable

The GETENV function returns the value of an environment variable.

SHOVAL GETENV(SHELL)
= "/bin/tcsh"

ISCOMMAND - Is name a command mnemonic?

ISCOMMAND (name) tests whether or not name is a command mnemonic in the database.
The result of ISCOMMAND (name) is non-zero if name is a command mnemonic. For cases that
do not map the command database such as STOL, this call will always return 0.

$Date: 2006/07/24 21:17:20 $

STOL Functions 5

ISDATE — Is x a date?

ISDATE (x) returns int 1 iff x evaluates to a date, and int 0 otherwise.

ISFLOAT — Is x a float?

ISFLOAT (x) returns int 1 iff x evaluates to a float, and int 0 otherwise.

ISFLOAT(1.2) = (int) 1
ISFLOAT(1) = (int) O

ISGLOBAL — Is name a global variable?

ISGLOBAL (name) tests whether or not name is a STOL global variable. (ISGLOBAL
does _not_ test for global mnemonics).

ISINLIMITS — Is the mnemonic in limits?

ISINLIMITS (name) tests whether or not name is a mnemonic within limits.
ISINLIMITS (name) returns int 1 iff name is in limits, and int O otherwise.

ISINT — Is x an int?

ISINT(x) returns int 1 iff x evaluates to an int, and int 0 otherwise.

ISINT(1.2) = (int) O
ISINT(1) = (int) 1

ISLOCAL — Is name a local variable?

ISLOCAL(name) tests whether or not name is a STOL local variable. ISLOCAL(name)
returns int 1 iff x is a STOL local variable, and int 0 otherwise.

ISMNEMONIC — Is name a telemetry mnemonic?

ISMNEMONIC(name) tests whether or not name is a telemtry mnemonic in the database.
The result of ISMNEMONIC(name) is non-zero if name is a telemetry mnemonic. For cases
that do map the telemetry database, this call will always return 0.

ISNULL - Is x null?

ISNULL(x) returns int 1 iff x is unset (i.e. NULL), and int 0 otherwise.

ISNUMBER - Is x an int, unsigned or float?

ISNUMBER (x) returns int 1 iff x is number, and int 0 otherwise.

$Date: 2006/07/24 21:17:20 $

STOL Functions 6

ISREDHI — Is mnem’s value red high?

ISREDHI (name) returns 1 iff name mnemonic is in red high limit violation, and int 0
otherwise.

ISREDLO — Is mnem’s value red low?

ISREDLO(name) returns 1 iff name mnemonic is in red low limit violation, and int O
otherwise.

ISSTATIC — Has mnem gone static?

ISSTATIC (mnemonic) returns 1 if mmemonic is static and returns 0 otherwise.

A mnemonic goes static if it isn’t received in telemetry within an appropriate interval of
time (see (undefined) [Static flag], page (undefined)).

ISSTRING — Is x a string?

ISSTRING(x) returns int 1 iff x evaluates to a string, and int 0 otherwise.

ISSYMBOL — Is name a variable or mnemonic?

ISSYMBOL (x) returns int 1 iff x is a STOL variable or database mnemonic, and int 0
otherwise.

ISTIME — Is x a time?

ISTIME(x) returns 1 iff x evaluates to a time, and int 0 otherwise.

ISUNSIGNED - Is x unsigned?

ISUNSIGNED (x) returns 1 iff x evaluates to unsigned, and int 0 otherwise.

ISUNSIGNED(0) = (int) O
ISUNSIGNED(x’00’) = (int) 1

ISVARIABLE — Is name a variable?

ISVARIABLE (name) returns int 1 iff name is a STOL variable, and int 0 otherwise.

ISYELLOWHI - Is mnem’s value yellow high?

ISYELLOWHI (name) returns 1 iff name mnemonic is in yellow high limit violation, and int
0 otherwise.

$Date: 2006/07/24 21:17:20 $

STOL Functions 7

ISYELLOWLO - Is mnem’s value yellow low?

ISYELLOWLO (name) returns 1 iff name mnemonic is in yellow low limit violation, and int
0 otherwise.

LN — Natural log of x

LN(x) computes the natural log of x. x must be greater than 0.

LOG — Base 10 log of x

LOG(x) computes the base 10 log of x. x must be greater than 0.

LOWERCASE — Convert string to lower case

LOWERCASE (x) returns the lowercase equivalent of x.

MAX — Find largest number in list of 1 to 999 items

MAX(x,y,...) returns the largest number in the argument list. Works with both integers
and floats or a mixture of both.

MIN - Find smallest number in list of 1 to 999 items

MIN(x,y,...) returns the smallest number in the argument list. Works with both
integers and floats or a mixture of both.

MKDATE — Make date from raw secs and subsecs

The MKDATE function constructs a date from raw seconds and subseconds.
MKDATE (808003397,1234) = 93-364-21:23:17.018829

MKEPOCHDATE — Make date since given epoch from raw
secs and subsecs

The MKEPOCHDATE (epoch, sec, subseconds) function constructs a date from raw sec-
onds and subseconds based on given epoch.

MKEPOCHDATE (GBL_DEF_EPOCH,808003397,1234) = 93-364-21:23:17.084364
MKEPOCHDATE (68-145-00:00:00.065535,808003397,1234) = 93-364-21:23:17.084364

MKTIME — Make time from raw secs and subsecs

The MKTIME (sec, subseconds) function constructs a time from raw seconds and sub-
seconds.

SHOVAL MKTIME(123,456) = 0:02:03.006958

$Date: 2006/07/24 21:17:20 $

STOL Functions 8

MOD - Find remainder when x / y

The MOD(x,y) function can be used to determine if a number is odd or even:
MOD(112,2) = 0
MOD(113,2) = 1
MOD(114,2) = 0

NAME — Use string as a name

Allows the name of a command or submnemonic to be passed as an argument to a proc,
as in:
PROC ABC(S1,S52)
/SOMECMD NAME(S1)=1, NAME(S2)=1
ENDPROC

which, when started with START ABC(XYZ,PDQ), issues the command /SOMECMD XYZ=1,
PDQ=1. Whew. Another, less useful, example might make things more clear:

LOCAL X,Y
Y = 543
X = "y"

SHOVAL NAME(X)
= global Y: (int) 543

SIN — Sine of x

SIN(x) computes the sine of x. x must be float (or convertible to float); the result of
SIN(x) is float. x is in radians.

SQRT — Square root of x

SQRT(x) computes the square root of x. x must be float (or convertible to float); the
result of SQRT (x) is float.

STRFDATE — Format date

STRFDATE (fmt ,date) creates a string containing the value of date formatted according
to fmt.

fmt is a format string as used by the C library function strftime(). From man 3 strftime:

Aa is replaced by the weekday name. A produces the full name; a produces the
abbreviated name.

Bbh is replaced by the month name. B produces the full name; b and h produce the
abbreviated name.

C shorthand for ‘%4a %b %e %H:%M:%S %Y’.

c shorthand for ‘%m/%d/%hy %H:%M: %S’ .

$Date: 2006/07/24 21:17:20 $

STOL Functions 9

D shorthand for ‘%m/%d/%hy’.

de is replaced by the 2-digit day of the month, 1 to 31. d preceeds single digits
with ‘0’; e with space.

f is replaced by the microseconds field of the input time as a 6-digit, zero-filled
decimal number.

Hk is replaced by the hour on a 24-hour scale, 0-23. H preceeds single digits with
‘0’; codek with space.

I1 is replaced by the hour on a 12-hour scale, 1-12. I preceeds single digits with
‘0’; 1 with space.

Jj is replaced by the day of the year (Julian day). J begins with day ‘000’; j with
day ‘001’.

M is replaced by the minute, ‘00’-‘69’.

m is replaced by the month, ‘01’-‘12’.

n is replaced by a newline, which cannot appear on a page, but might be useful

to an ITOS programmer.
P is replaced by ‘AM’ or ‘PM’, as appropriate.
is shorthand for ‘%H: %M .

r is shorthand for ‘%I:%M:%S %p’.
S is replaced by the number of seconds, ‘00’-‘69’.
s is replaced by the number of seconds in the input time, which are seconds from

the UNIX epoch in local time.

TX is shorthand for ‘%H:%M:%S’.

t is replaced by a tab character, which is not useful in page definitions.

uw is replaced by the week number of the year, ‘00’-‘63’. U takes Sunday as the
first day of the week; W takes Monday.

W is replaced by the day of the week, ‘0’-‘6’, with Sunday as day ‘0’.

X is shorthand for ‘%m/%d/%y’.

Yy is replaced by the year. y produces the 2-digit year, ‘00’-‘99’; ‘Y’ the four-digit
year.

Z is replaced by the timezone abbreviation.

The following examples use STRFDATE to create log file names:

LOG >> (CONCAT("LOG.",STRFDATE ("%m-%d" ,PQGBL_GMTOFF)))
=L0G.06-20

LOG >> (CONCAT("LOG.",STRFDATE("%b%d",P@GBL_GMTOFF)))
=L0G.Jun20

$Date: 2006/07/24 21:17:20 §$

STOL Functions 10

STRLEN — Determine length of string.

STRLEN (x) returns the number of characters in string x. x must be a string (or convertible
to string); the result of STRLEN(x) is int.

STRLEN("123") = (int) 3

STRTOL — Convert a string to signed int

STRTOL (string,b)' returns the number in base b contained in string.
STRTOL("FF",16) = 255
STRTOL("10110",2) = 22
STRTOL("10110junk",2) = 22
STRTOL("junk",2) = (Operator error)
If base is not specified, 10 is assumed.

STRTOL can be used in conjuction with the ASK directive to allow the Test Conductor to
enter a hex number:
LOCAL hex,decimal
ASK "enter a hex number", hex
decimal = STRTOL (hex,16)
shoval decimal
In the above example, if the Test Conductor enters 16 in response to the ASK directive’s
prompt, the SHOVAL directive’s result is 22!

STRTOUL — Convert a string to unsigned int

STRTOUL (string,b)? is similar to STRTOL except it returns an unsigned number.
sho strtoul("0xf6741123",16)
= 4134801699
sho strtol("0xf6741123",16)
= 2147483647

SUBSTR — Extract substring

SUBSTR(x,y,z) extracts a substring from string x. Int y is the index of the first character
in the substring (the first character in x has index 1). Optional int z is the number of
characters in the substring; if z isn’t specified, the substring uses the remaining characters
in x. x, y, and z may be expressions.

SUBSTR("abcd",2) = "bcd"
SUBSTR("93-344-19:40:33",4,3) = "344"

The following directive logs event messages to a file named L0OG-ddd where ddd is the

current day-of-year:

LOG > (CONCAT("LOG-", SUBSTR(PO@GBL_GMTOFF,4,3)))

! It’s named STRTOL because it’s modeled after the C library function strtol()
2 1t’s named STRTOUL because it’s modeled after the C library function strtoul()

$Date: 2006/07/24 21:17:20 $

STOL Functions 11

TAN — Tangent of x

TAN(x) computes the tangent of x. x must be float (or convertible to float); the result
of TAN(x) is float. x is in radians.

TODATE — Convert x to date

TODATE (x) converts x to a date. When converting and integral, float, or time value to
date the value is treated as the number of seconds since the midnight that began Jan 1
1970.

TOFLOAT — Convert x to float

TOFLOAT (x) returns the float equivalent of x.

TOINT — Convert x to int

TOINT(x) returns the int equivalent of x.

TOSTRING — Convert x to string

TOSTRING (x) returns the string equivalent of x.

TOTIME — Convert x to time

TOTIME (x) returns the time equivalent of x.

TOUNSIGNED — Convert x to unsigned

TOUNSIGNED (x) returns the unsigned equivalent of x.

UPPERCASE - Convert string to uppercase

UPPERCASE (x) returns the uppercase equivalent of x.

$Date: 2006/07/24 21:17:20 $

Table of Contents

STOL Functionsciiiiiennnnn.. 1
ABS — Absolute value of x......... . 1
ACOS - Compute arccosine of x.................iieii... 1
ASIN — Compute arc sineof x.............. i, 1
ATAN - Compute arc tangent of x, 1
BWAND - Bitwise ANDof xand yooviaai. ... 1
BWINVERT — Invert bitsin x, 1
BWLSHIFT - Logical left shift x y bits........................ 1
BWOR - Bitwise ORofxand y, 2
BWRSHIFT - Logical right shift x y bits...................... 2
CEIL - Smallest int .GE. x........... ... 2
CONCAT - Concatenate strings (2 t0999)..................... 2
COS —Cosine of X ... oo 2
DEL T A 3
EVTMSG . 3
EXISTS — Has mnem’s value been set? 3
FLOOR - Largest int .LE. x....... 3
FORMAT — Format Xcuueeeee it e 3
GETENYV - get environment variable.......................... 4
ISCOMMAND - Is name a command mnemonic?............... 4
ISDATE —Isxadate?ot 5
ISFLOAT —Isxafloat? o, 5
ISGLOBAL - Is name a global variable? 5
ISINLIMITS — Is the mnemonic in limits?...................... 5
ISINT —Isxan int?.o e 5
ISLOCAL — Is name a local variable? 5
ISMNEMONIC - Is name a telemetry mnemonic? 5
ISNULL —TIs xnull?o 5
ISNUMBER - Is x an int, unsigned or float? 5
ISREDHI - Is mnem’s value red high? 6
ISREDLO — Is mnem’s valuered low? 6
ISSTATIC — Has mnem gone static?........................... 6
ISSTRING ~Isxastring? ... 6
ISSYMBOL — Is name a variable or mnemonic? 6
ISTIME —Isx a time? ... oo 6
ISUNSIGNED —Is x unsigned?cooiiiiiiiieinnnnn... 6
ISVARIABLE - Is name a variable? 6
ISYELLOWHI - Is mnem’s value yellow high? 6
ISYELLOWLO - Is mnem’s value yellow low?.................. 7
LN - Naturallogof xo o 7
LOG-Basel0logof x........oooviii 7
LOWERCASE - Convert string to lower case 7

$Date: 2006/07/24 21:17:20 $

MAX - Find largest number in list of 1 to 999 items............ 7
MIN - Find smallest number in list of 1 to 999 items 7
MKDATE - Make date from raw secs and subsecs.............. 7
MKEPOCHDATE - Make date since given epoch from raw secs
and SUDSECS . ..ot e 7
MKTIME — Make time from raw secs and subsecs 7
MOD - Find remainder whenx /y............................ 8
NAME — Use String as a Nameooeveeruunnnneneenn.. 8
SIN — Sine Of X .. vi et e e 8
SQRT — Squareroot of x ... 8
STRFDATE — Format date................. 8
STRLEN — Determine length of string. 10
STRTOL — Convert a string to signed int 10
STRTOUL - Convert a string to unsigned int 10
SUBSTR — Extract substring ..., 10
TAN — Tangent of x. ... 11
TODATE - Convert xtodate oo, . 11
TOFLOAT - Convert x to float 11
TOINT — Convert x to int ..o 11
TOSTRING — Convert x to string............................ 11
TOTIME — Convert x to time.oiiiiiiinnnna. ... 11
TOUNSIGNED - Convert x to unsigned 11
UPPERCASE - Convert string to uppercase 11

$Date: 2006/07/24 21:17:20 §

ii

